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Abstract. Majority voting over the nonlinear tax schedules proposed by a continuum
of citizen candidates is considered. The analysis extends the finite-individual model of
Röell (unpublished manuscript, 2012). Each candidate proposes the tax schedule that
is utility maximal for him subject to budget and incentive constraints. Each of these
schedules is a combination of the maxi-min and maxi-max schedules along with a region
of bunching in a neighborhood of the proposer’s type. Techniques introduced by Vincent
and Mason (1967, NASA Contractor Report CR-744) are used to identify the bunching
region. As in Röell’s model, it is shown that individual preferences over these schedules
are single-peaked, so the median voter theorem applies. In the majority rule equilibrium,
marginal tax rates are negative for low-skilled individuals and positive for high-skilled
individuals except at the endpoints of the skill distribution where they are typically zero.
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1. Introduction

The extensive literature on redistributive income taxation that builds on the seminal
work of Mirrlees (1971) has primarily been normative. In the Mirrlees model, everybody
has the same preferences for consumption and labor supply, but they differ in skill levels
(their “types”) as measured by their labor productivities. While the distribution of these
productivities is common knowledge, the value of any individual’s productivity is only
known to himself. The government chooses a nonlinear income tax schedule to maximize
a social welfare function subject to the constraints that (i) each individual optimally
chooses his consumption and labour supply given the tax schedule and (ii) the resulting
allocation satisfies the government’s budget constraint.

Alternatively, redistributive income tax policy can be studied from a political economy
perspective. In the political economy literature, it is often assumed that individuals have
single-peaked preferences on the relevant set of alternatives and that majority voting is
used to determine what outcome is chosen.1 See, for example, Austen-Smith and Banks
(1999) and Persson and Tabellini (2000). With these assumptions, as shown by Black
(1948), any most-preferred alternative of a voter with a median preference peak does as
well as any other alternative in a pairwise majority vote; that is, it is a Condorcet winner.
However, in general, individual preferences over the set of all income tax schedules that
satisfy the incentive and budget constraints in the Mirrlees problem are not single-peaked,
so Black’s Median Voter Theorem does not apply if majority voting is used to determine
redistributive tax policy when only those constraints are imposed. Indeed, Itsumi (1974)
and Romer (1975) show that even if the tax schedules are restricted to be linear, quite
restrictive assumptions on the preferences and skill distribution are needed to ensure
single-peakedness.

Röell (2012) has initiated the study of majority voting over nonlinear income tax
schedules when the set of tax schedules being voted on are restricted to those that are
selfishly optimal (given the constraints in the Mirrlees problem) for some individual.2

Specifically, in a finite type version of the Mirrlees model as in Guesnerie and Seade
(1982), for each skill type k, Röell first determines the qualitative properties of the tax
schedule that maximizes type k’s utility subject to the incentive and budget constraints
described above and an additional constraint that guarantees each person a minimum
utility. This is the tax schedule that someone of type k would choose if he were selfishly
dictatorial and respects the minimum-utility constraint. Imposing the minimal-utility

1When we refer to preferences as being single-peaked, we employ the weak definition of single-
peakedness of Austen-Smith and Banks (1999, p. 98). In this definition, an individual may have more
than one most-preferred alternative—a plateau—and preferences need only be weakly decreasing as one
moves farther from this plateau in either direction.

2Meltzer and Richard (1981) had previously considered voting rules for which a decisive individual
(e.g., a dictator or a median voter) choses his most-preferred feasible linear income tax schedule. Snyder
and Kramer (1988) consider majority voting over selfishly optimal nonlinear income tax schedules in
a model in which individuals allocate a fixed amount of labor between the taxable and underground
sectors.
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constraint limits the degree to which low skilled individuals can be exploited in order
to further the interests of type k. With the further assumption that preferences are
quasilinear in consumption, Röell shows that everybody has single-peaked preferences
over these schedules provided that with the schedule chosen by any type k, it is optimal
for the adjacent upward incentive constraints to bind for all individuals with lower skill
levels than his own, which limits the extent to which minimum-utility constraints bind.
Hence, Black’s Theorem applies when voting is restricted in this way.

In effect, the model of politics employed by Röell is an application of the citizen-
candidate framework of Osborne and Slivinski (1996) and Besley and Coate (1997) in
which each candidate proposes his favorite feasible policy.3 In the Osborne–Slivinksi
and Besley–Coate citizen-candidate models, there is a cost for a candidate to contest an
election, so not everybody runs for office. In contrast, in Röell’s model, there is no cost
to proposing a tax schedule for consideration, so everybody is a candidate.4

Using a continuum version of Röell’s problem, we show that it is possible to provide
a complete characterization of the income tax schedule that is utility maximal for a
candidate of any skill type k subject to the incentive and government budget constraints
when preferences are quasilinear in consumption.5 This is done by characterizing the
income schedule that specifies how much before-tax income each skill type would receive
with the selfishly optimal income tax schedule that is proposed by a candidate of type
k. With quasilinear-in-consumption preferences, incentive compatibility of an allocation
is preserved if everybody’s income is changed by a common amount. As a consequence,
once candidate k’s optimal income schedule has been determined, the corresponding
schedule showing how consumption varies with the skill level is easily determined using
the government budget constraint (which must bind). The tax an individual pays is the
difference between his consumption and before-tax income.

A candidate with the lowest skill type proposes the maxi-min income schedule, whereas
one with the highest skill type proposes the maxi-max income schedule. We show that
the maxi-max schedule lies everywhere above the maxi-min schedule. For a candidate of
any type other than the lowest and highest, we show that he proposes an income schedule
that (i) coincides with the maxi-max schedule for the lower part of the skill distribution,
(ii) coincides with the maxi-min schedule for the upper part of the skill distribution, and
(iii) “bridges” these two segments with a region of bunching that contains the candi-
date’s type.6 The endpoints of this bunching region are nondecreasing in the type of the

3A preliminary version of Röell’s paper was completed in March 1996 prior to the publication of these
two articles.

4Ledyard (2006, Sec. 3.6) briefly describes a model in which two candidates propose levels of public
goods and nonlinear income tax schedules knowing that it is costly to vote so that not everybody votes.
Ledyard indicates that his discussion is based on unpublished work with Marcus Berliant.

5In Brett and Weymark (2014), we show how this schedule must be modified if the minimum-utility
constraint is also taken into account. The addition of this constraint greatly complicates the analysis.

6For candidate types sufficiently close to the lowest, it is possible that the solution starts on the
bridge, in which case it provides a case of bunching at the bottom similar to that studied by Ebert
(1992). If the distribution of types is bounded above, it is possible to have bunching at the top as well.
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candidate, from which it follows that everybody has a single-peaked preference over the
proposed tax schedules, and so the median voter theorem applies.

In order to obtain the characterization of candidate k’s selfishly optimal income sched-
ule, we proceed by first considering a relaxed version of his optimization problem in which
we ignore the second-order incentive-compatibility condition that income is nondecreas-
ing in the skill level (Lollivier and Rochet, 1983). This is the first-order approach to
candidate k’s problem. If the maxi-min and maxi-max income schedules are strictly
increasing in the skill level, the solution to this relaxed problem is easy to describe.7

A candidate of type k wishes to redistribute income from all other types toward his
own type. To do this, for types greater than his own, he optimally employs the maxi-
min income schedule, whereas for types smaller than his own, he optimally employs the
maxi-max income schedule. In the maxi-min case, both candidate k and a maxi-min
utility social planner wish to extract as much revenue as incentives allow from the higher
types. Because candidate k’s optimal before-tax income schedule does not depend on the
distribution of consumption, his desire to give that revenue to himself rather than to the
least-skilled is of no consequence for the specification of this part of the income schedule.
The optimality of using the maxi-max solution for the rest of the skill distribution follows
from similar reasoning.

Because the maxi-min schedule lies above the maxi-min schedule, the solution to
candidate k’s relaxed problem exhibits a downward discontinuity at his own skill level,
and so violates the second-order monotonicity condition for incentive compatibility. To
obtain the solution when this constraint is taken into account requires “ironing” the
schedule described above by introducing a level “bridge” that connects the maxi-max
and maxi-min components of the relaxed solution. The standard way of identifying
the endpoints of a bunching interval is to use the kind of control-theoretic techniques
described in Guesnerie and Laffont (1984). We instead employ the procedure developed
by Vincent and Mason (1967, 1968) for smoothing discontinuous control trajectories.
Applied to candidate k’s problem, solving for the bridge endpoints using the Vincent–
Mason approach is a simple unconstrained optimization problem.

In the maxi-min part of candidate k’s income schedule, redistribution is constrained
by downward incentive-compatibility constraints and gives rise to the familiar positive (or
zero for the highest type) marginal income tax rates. Similarly, in the maxi-max part of
this schedule, redistribution is constrained by upward incentive-compatibility constraints,
which gives rise to negative (or, in some circumstances, zero for the lowest type) marginal
income tax rates. As a consequence, there must be a kink in the optimal income tax
schedule at the income chosen by candidate k and bunching of some of the types near
him.

Single-peakedness of the individual preferences over the set of income tax schedules
being voted on is a sufficient condition for the existence of a Condorcet winner; it is

This corresponds to having the income schedule ending on the bridge.
7We present sufficient conditions for these monotonicity conditions to hold and also describe how the

analysis needs to be modified when they are not.
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not necessary. Provided that individual preferences for consumption and income satisfy
the standard single-crossing property introduced by Mirrlees (1971), Gans and Smart
(1996) show that if any two of the tax schedules under consideration only cross once,
then pairwise majority voting generates a quasitransitive “social” preference on the set
of these tax schedules.8 When there are a finite number of tax schedules being voted
on, quasitransitivity is sufficient for the existence of a Condorcet winner.9 Because there
is a continuum of tax schedules in our problem, demonstrating that the tax schedules
satisfy the Gans–Smart single-crossing condition would not be sufficient to establish the
existence of a Condorcet winner.

Associated with each selfishly optimal income tax schedule is a utility schedule that
specifies utility as a function of skill type. Using a continuum version of the Röell model,
Bohn and Stuart (2013) show that any pair of these utility curves cross only once, which
is a single-crossing property first investigated by Matthews and Moore (1987) in the
context of a general adverse selection problem.10 When certain regularity conditions
are satisfied, Bohn and Stuart show that this form of single-crossing is sufficient for the
median skill type to be a Condorcet winner. In deriving their results, Bohn and Stuart
assume that the minimum-utility constraint is satisfied, but do not require preferences to
be quasilinear. As a consequence, their analysis is quite technical.11 By assuming that
individual preferences are quasilinear in consumption and by not considering a minimum-
utility constraint, we are not only able to provide a complete characterization of each skill
type’s selfishly optimal income schedule, we are able to do so using elementary calculus.12

The rest of this article is organized as follows. Section 2 introduces the model of
the economy. Section 3 contains a detailed account of a citizen candidate’s choice of a
selfishly optimal income tax schedule. This is followed in Section 4 by an analysis of the
voting equilibrium. Section 5 provides concluding remarks. The proofs of our results

8A weak preference relation is quasitransitive if the strict preferences are transitive
9The Gans–Smart result generalizes related results in Roberts (1977) for linear income taxes. Using

specific functional forms, Austen-Smith and Banks (1999, pp. 113–115) and Persson and Tabellini (2000,
pp. 118–121) show why income tax schedules satisfy the single-crossing property when they are linear.
As Gans and Smart (1996) note, the single-crossing tax schedule condition is equivalent to the schedules
being completely ordered in terms of their progressivity and to the requirement that the individuals
choose incomes that are nondecreasing in the skill level regardless of what tax schedule they face, a
property that Roberts (1977) calls Hierarchical Adherence. Berliant and Gouveia (2001) have developed
sufficient conditions for single-crossing income tax schedules in a model in which the set of skill types is a
finite sample from a known distribution, the government’s revenue requirement depends on the realized
distribution, and voting takes place before the voters know what distribution is realized.

10Unlike the single-crossing condition for preferences used in Mirrlees (1971), the Matthews–Moore
single-crossing condition does not require there to be only two goods.

11The Bohn–Stuart analysis also makes extensive use of an assumption about the curvature properties
of an optimized value function. It is not clear what restrictions this assumption imposes on the primitives
of the model.

12De Donder and Hindricks (2003) use simulations to investigate the existence of a Condorcet winner
among the set of selfishly optimal quadratic income tax schedules. Voting over nonlinear income tax
schedules when the candidates have some form of vote maximizing objective is considered by Blomquist
and Christiansen (1999), Roemer (2012), and Bierbrauer and Boyer (2013).
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may be found in the Appendix.

2. The Model

The economy is populated by individuals that differ in labor productivity. Differences
in skills are described by a parameter w which is continuously distributed with support
[w, w̄], density function f(w) > 0, and cumulative distribution function F (w). It is
assumed that 0 < w < w̄. An individual with skill level w produces w units of a
consumption good per unit of labor time in a perfectly competitive labor market and
earns a (before-tax) income of

y = wl, (1)

where l is the amount of labor supplied. Thus, w is this type’s wage rate. Income can
also be thought of as being labor in efficiency units.

An individual has consumption x, which is also his after-tax income. Preferences over
consumption and labor supply are represented by the quasilinear-in-consumption utility
function

ũ(l, x) = x− h(l), (2)

which is common to all individuals. The function h is increasing, strictly convex, and
three-times continuously differentiable. The government can observe an individual’s
before- and after tax incomes, but not his skill level or labor supply. Using (1), the
utility function in terms of observable variables is

u(y, x;w) = x− h
( y
w

)
. (3)

In terms of consumption and income, the marginal rate of substitution at any bundle
(y, x) is decreasing in w when y > 0, so the standard Mirrlees (1971) single-crossing
condition for preferences is satisfied.

Individuals face an anonymous nonlinear income taxation schedule that specifies the
tax paid as a function of income T (y), subject to which individuals choose their most pre-
ferred combination of consumption and before-tax income (equivalently, after-tax income
and labor supply). Admissible tax schedules are assumed to be piecewise continuously
differentiable. By the Taxation Principle (see Hammond, 1979; Guesnerie, 1995), having
individuals choose consumption and income subject to an anonymous tax schedule is
equivalent to directly specifying these variables as functions of type subject to incentive-
compatibility constraints. These schedules, x(·) and y(·), as well as the labor supply
schedule l(·) corresponding to y(·), are also piecewise continuously differentiable.13 Be-
cause there are no mass points in the distribution, T (·), x(·), y(·), and l(·) are all contin-
uous (see Hellwig, 2010). The bundle allocated to individuals of type w is (y(w), x(w)).

13As shown by Hellwig (2010), it is only necessary to assume that these schedules are integrable. The
stronger assumption of piecewise continuous differentiability is typically made to facilitate the use of
standard control-theoretic arguments.
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The resulting utility level is

V (w) = x(w)− h
(
y(w)

w

)
, ∀w ∈ [w, w̄]. (4)

Incentive compatibility requires that

V (w) = max
w′

x(w′)− h
(
y(w′)

w

)
, ∀w,w′ ∈ [w, w̄]. (5)

Because the Mirrlees single-crossing property is satisfied, it follows from Mirrlees (1976)
that the first-order (envelope) condition for incentive compatibility is

V ′(w) = h′
(
y(w)

w

)
y(w)

w2
, ∀w ∈ [w, w̄], (6)

and the second-order condition is

y′(w) ≥ 0, ∀w ∈ [w, w̄].14 (7)

Consumption must also be nondecreasing in type. Moreover, the single-crossing property
and incentive compatibility imply that two types either (i) differ in both income and
consumption or (ii) have the same bundle, in which case they are said to be bunched
(see Laffont and Martimort, 2002, sec. 3.1). Because h is increasing, (6) implies that
utility is nondecreasing in w whenever incentive compatibility is satisfied and it is strictly
increasing for all w for which y(w) > 0.

The income tax schedule must be differentiable almost everywhere. At any income for
which it is not differentiable, the marginal tax rate τ(w) is not well-defined. At incomes
for which it is well-defined as the derivative of the tax schedule, τ(w) is equal to one
minus the marginal rate of substitution between consumption and income (i.e., between
after-tax and before-tax incomes). As is standard, this expression can be used to define
an implicit marginal tax rate for values of y for which T (y) is not differentiable. Thus,

τ(w) = 1− h′
(
y(w)

w

)
1

w
, ∀w ∈ [w, w̄]. (8)

Because utility is quasilinear in consumption, marginal tax rates do not depend on con-
sumption.

The only purpose of taxation is to redistribute income, so the government budget
constraint is ∫ w̄

w

[y(w)− x(w)]f(w) dw ≥ 0. (9)

The qualitative features of our analysis are unaffected if the government instead requires
a fixed positive amount of revenue.

14The expressions in (6) and (7) are required to hold at all points for which y(w) is differentiable.
Because incentive compatibility implies that income is nondecreasing in type, y(w) is differentiable
almost everywhere.
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3. The Citizen Candidate’s Problem

Each individual proposes an income tax schedule and then pairwise majority rule is used
to choose which of these schedules is implemented. A tax schedule can only be proposed
if the resulting allocation satisfies the incentive-compatibility conditions (6) and (7) and
the government budget constraint (9). We call such a schedule an incentive-compatible
income tax schedule. We suppose that the tax schedule proposed by an individual is his
selfishly optimal incentive-compatible tax schedule. That is, it is the incentive-compatible
schedule that maximizes his own utility. Individuals of the same type propose the same
tax schedule. Hence, we can equivalently think of voting as taking place over types of
individuals. In this interpretation of our model, we are viewing individuals as being
citizen candidates, as in Osborne and Slivinski (1996) and Besley and Coate (1997). We
suppose that there are no costs for a candidate to enter the election (i.e., to propose a
tax schedule for consideration) and, so, every type is a candidate. The requirement that
a candidate proposes his favorite feasible tax schedule reflects his inability to commit to
a tax policy at the time of the election. Voters know this, and this informs their choice
of candidates when voting.

Rather than thinking of a candidate as proposing an income tax schedule, it is more
convenient to appeal to the Taxation Principle and think of a candidate as choosing an
allocation schedule (y(·), x(·)) that specifies a bundle (x(w), y(w)) for each type w ∈
[w, w̄].15 Formally, a candidate of type k determines his optimal allocation schedule by
solving

max
x(·),y(·)

V (k) subject to (4), (6), (7), and (9). (10)

We refer to (10) as candidate k’s problem.
Two characteristics of candidate k’s problem distinguish it from the standard Mirr-

lees (1971) problem: the form of the objective function and the explicit inclusion of
the second-order incentive-compatibility constraint. Mirrlees used a utilitarian objective
function, whereas here the utility of a particular type of individual is being maximized
When this type is w, the objective is simply the maxi-min criterion, which has been
studied in detail by Boadway and Jacquet (2008). For reasons of tractability, Mirr-
lees and most subsequent authors only considered the first-order conditions for incentive
compatibility, what is known as the first-order approach. The second-order incentive-
compatibility conditions have been explicitly taken into account by Brito and Oakland
(1977) and Ebert (1992). The complete solution to candidate k’s problem can be deter-
mined from the solution to the relaxed problem in which the second-order monotonicity
constraint (7) is ignored, so we begin by considering it. An analysis of the relaxed problem
also yields useful insights into the nature of candidate k’s optimization problem.

15In this section, the identity of the candidate is fixed, so we do not index the schedules by the
candidate’s type.
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3.1. The First-Order Approach

The relaxed problem in which the monotonicity constraint on before-tax income is sup-
pressed provides a picture of how the form of the objective function in the candidate’s
problem helps to create a solution to the optimal tax problem that is very different from
those found in other optimal nonlinear income tax problems. Formally, this problem is

max
x(·),y(·)

V (k) subject to (4), (6), and (9). (11)

We refer to (11) as candidate k’s relaxed problem.
By modifying the arguments found in Lollivier and Rochet (1983), we show in Propo-

sition 1 that it is possible to formulate an unconstrained optimization problem that
provides the before-tax income schedule that solves candidate k’s relaxed problem. As
is standard in a nonlinear income tax problem, it is optimal for the government bud-
get constraint to bind.16 Once candidate k’s optimal before-tax income schedule has
been determined, the corresponding consumption schedule (and, hence, the income tax
schedule) can be derived using the incentive-compatibility and binding government bud-
get constraints. With quasilinear-in-consumption utility, the relevant properties of the
optimal bundles for each type can be inferred from the before-tax income schedule, so
we do not consider the consumption schedule that solves candidate k’s relaxed problem
explicitly.

Proposition 1. The optimal schedule of before-tax incomes y(·) for candidate k’s relaxed
problem is obtained by solving

max
y(·)

∫ k

w

{[
(y(w)− h

(
y(w)

w

)]
f(w) +

y(w)

w2
h′
(
y(w)

w

)
F (w)

}
dw

+

∫ w̄

k

{[
(y(w)− h

(
y(w)

w

)]
f(w)− y(w)

w2
h′
(
y(w)

w

)
[1− F (w)]

}
dw.

(12)

For ease of exposition, we suppose for now that the solutions to (12) for k = w and
k = w̄ are strictly increasing in w (so there is no bunching) and, hence, that both of these
solutions satisfy the monotonicity constraint (7). Later, we shall relax this assumption
and also identify sufficient conditions for it be satisfied. Thus, when k = w, the solution
to (12) is the maxi-min income schedule, which we denote by yR(·), and when k = w̄,
the solution is the maxi-max income schedule, which we denote by yM(·).17 From (12),
we see that the income schedule that solves candidate k’s relaxed problem coincides with
the maxi-max solution for individuals with skill types smaller than that of the candidate

16If the budget constraint does not bind, because preferences are quasilinear in consumption, each
person’s consumption can be increased by a common small amount without violating incentive compat-
ibility, thereby increasing the utility of type k individuals.

17It is commonplace to call the maxi-min objective “Rawlsian” even though Rawls (1971) used an
index of primary goods rather than utility in his criterion. Our notation reflects this common usage.
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and coincides with the maxi-min solution for individuals with skill types larger than that
of the candidate.

Not only is the optimization problem (12) unconstrained, it can be solved point-wise.
Thus, simple differentiation with respect to y(w) provides the first-order conditions for
candidate k’s relaxed problem, which we write in the implicit form as

θM(w, y(w)) = 0, ∀w ∈ [w, k),

θR(w, y(w)) = 0, ∀w ∈ [k, w̄],
(13)

where

θM(w, y) =

[
1− h′

( y
w

) 1

w

]
f(w) +

[
h′′
( y
w

) y

w3
+ h′

( y
w

) 1

w2

]
F (w) (14)

and

θR(w, y) =

[
1− h′

( y
w

) 1

w

]
f(w)−

[
h′′
( y
w

) y

w3
+ h′

( y
w

) 1

w2

]
[1− F (w)].18 (15)

Using (8), (13), and (15), the optimal maxi-min marginal tax rates are

τR(y(w)) =
1− F (w)

f(w)

[
h′′
(
y(w)

w

)
y(w)

w3
+ h′

(
y(w)

w

)
1

w

]
, ∀w ∈ [w, w̄].19 (16)

Hence, the marginal tax rate is zero for the highest skilled and positive for all other types
with the maxi-min objective. In the absence of the incentive constraints, personalized
lump-sum taxes would be used for redistribution. Given our quasilinearity assumption,
it then follows that compared to the full-information benchmark, every type except for
the highest has his income and labor supply distorted downwards, whereas the highest
skilled have the same income and labor supply as in the benchmark case. This pattern of
distortions coincides with those found using a utilitarian objective function except that
it is optimal in the utilitarian case for the lowest skilled to face a zero marginal tax rate
provided that it is not bunched with any other type (see Sadka, 1976; Seade, 1977).

From (8), (13), and (14), the optimal maxi-max marginal tax rates are

τM(y(w)) = −F (w)

f(w)

[
h′′
(
y(w)

w

)
y(w)

w3
+ h′

(
y(w)

w

)
1

w

]
, ∀w ∈ [w, w̄]. (17)

Therefore, with the maxi-max objective, the marginal tax rate is zero for the lowest
skilled (if it is not bunched) and negative for all other types. Compared to the full-
information benchmark, all types except the lowest skilled (who are not distorted) have
their incomes and labor supply distorted upwards.

18We write all first-order conditions for the optimal incomes as equalities, thereby implicitly assuming
that the non-negativity constraints on incomes are not binding. The qualitative features of our analysis
are unaffected if these constraints are taken into account.

19Boadway and Jacquet (2008, eqn. (21), p. 435) state this condition in an implicit form.
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Figure 1: Adjustments to restore incentive compatibility following an increase in y(w)
when y(w) < k

Using these observations, some intuition can be provided for the first-order conditions
(13) for candidate k’s relaxed problem. For ease of exposition, it is useful to think of
types as being discrete, but with skill levels arbitrarily close to each other. Candidate
k wishes to maximize the utility of individuals of his own type. The function θM(w, y)
captures the additional consumption (hence, utility) that individuals of this type can
gain by increasing y(w) by one unit for some w < k. At the solution, this value must
be zero. In the first instance, increasing y(w) by one unit makes available f(w) extra
units of consumption that can be diverted to the type k individuals. But appropriate
adjustments must also be made in order to ensure that incentive compatibility is re-
established after this increase. Candidate k wishes to redistribute resources away from
lower types towards his own type. Individuals of lower types are distorted upwards, so
this type of redistribution is constrained by upward incentive compatibility conditions
that prevent individuals of lower types from mimicking types above them. Thus, any
increase in y(w) for a w < k must be accompanied by adjustments that ensure that the
upward incentive constraints are satisfied. These adjustments are illustrated in Figure 1.

First, each individual of type w can be given h′(y(w)
w

) 1
w

additional units of consumption
to place him on his initial indifference curve, thereby ensuring that he has no incentive to
mimic any other type. This is shown by the adjustment from (y(w), x(w)) to (ỹ(w), x̃(w))
in Figure 1. Moreover, this change does not affect the incentives of any types above
w.20 These units of consumption must be subtracted from the f(w) units that can be

20Recall that we are assuming that the maxi-min solution exhibits no bunching, so y(w) 6= y(ŵ), where
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diverted to type k individuals. This accounts for the second term in the first bracket in
(14). Moving individuals of type w upward along their indifference curves in this way
slackens the upward incentive constraint for the type w̌ immediately below w. Because
preferences are quasilinear in consumption, by reducing the consumption of everybody
whose type is smaller than w by the amount in the final bracket in (14) restores incentive
compatibility. This is illustrated by the adjustment from (y(w̌), x(w̌)) to (y(w̌), x̃(w̌))
for type w̌ in Figure 1. There are F (w) individuals whose types are smaller than w, so
the second term in (14) is the total amount of consumption that type k individuals can
re-claim from these types in this way.

Candidate k also wishes to move resources away from types higher than himself to-
wards individuals of his own type. These types are downward distorted, so this kind
of redistribution is constrained by downward incentive compatibility constraints. The
function θR(w, y) shows the additional consumption that type k individuals can secure
for themselves through a one unit increase in y(w) for some w > k. The only difference
between θR(w, y) and θM(w, y) is in the final term. This difference arises because it
is the downward incentive constraints that bind for types above k. Moving individuals
of type w > k upward along their indifference curves in the manner described in the
preceding paragraph would lead to a violation of the downward incentive constraint for
the next highest type. Because preferences are quasilinear in consumption, satisfaction
of these constraints can be re-established by giving these individuals and everyone of a
higher type more consumption in the amount given in the final bracket in (15). There
are 1 − F (w) such individuals. Because this consumption must be given to individuals
of types different from that of the candidate, these resources are subtracted from the
amount available to the type k individuals.

As we have noted, with the maxi-min income schedule, everyone has his income
distorted downward compared to the full-information solution except for the highest type
who is undistorted, whereas with the maxi-max income schedule, everyone has his income
distorted upward compared to the full-information solution except for possibly the lowest
type who may be undistorted. Thus, the maxi-max schedule lies everywhere above the
maxi-min schedule. As a consequence, for any candidate k 6= w, w̄, his optimal income
schedule has a downward discontinuity at his skill type, as illustrated in Figure 2.21 We
summarize our main findings in Proposition 2.

Proposition 2. The optimal schedule of before-tax incomes y(·) for candidate k’s relaxed
problem is given by

y(w) =

{
yM(w), ∀w ∈ [w, k),

yR(w), ∀w ∈ [k, w̄].
(18)

For k 6= w, w̄, there is a downward discontinuity in this schedule at w = k.

ŵ is the next highest type above w. We are implicitly assuming that units of income are sufficiently
small so that ỹ(w) < y(ŵ).

21There is also a downward discontinuity in candidate k’s optimal consumption schedule at his type.
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Figure 2: The optimal income schedule for candidate k’s relaxed problem

The solution to candidate k’s relaxed problem for k 6= w, w̄ also features a jump from
the maxi-max to the maxi-min tax schedule at this candidate’s skill type. Moreover,
there is a discontinuity in the associated marginal tax rates, which are given by

τ(w) =

{
τM(w), ∀w ∈ [w, k),

τR(w), ∀w ∈ [k, w̄].
(19)

We thus have a switch from negative marginal tax rates for types just below type k to
positive marginal tax rates for types just above this type.

The discontinuities in the income schedule and in the marginal tax rates are inter-
twined. As we move from types just below type k to types just above it, the upward
distortions in incomes switch to downward distortions and the signs of the marginal
tax rates change from negative to positive. Because the maxi-max income schedule lies
strictly above the maxi-min schedule at w = k, it is impossible to reconcile these com-
peting distortions without a downward jump in the income schedule and a change in sign
in the marginal tax rates at k.

The downward jump in the solution to candidate k’s relaxed problem for the income
schedule clearly violates the second-order incentive compatibility conditions. So even if
the maxi-min and maxi-max income schedules do satisfy these second-order conditions,
we have not found a solution to candidate k’s problem in (10). Nevertheless, as we show
below, some elements of these solutions feature in the complete solution to his problem.
Before we turn to that issue, we first need to consider the circumstances in which the
maxi-min and maxi-max income schedules are increasing, as assumed in this subsection.
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3.2. Monotonicity of the Maxi-min and Maxi-max Income Schedules

Of the two components of candidate k’s relaxed solution, the part that tracks the maxi-
min income schedule yR(·) is the more familiar (see Boadway and Jacquet, 2008). Increas-
ingness of this schedule is equivalent to the locus of points for which θR(w, y) = 0 being
increasing. For fixed w, the second-order condition for y(w) to solve the unconstrained
optimization problem (12) for this type is that θRy (w, y(w)) ≤ 0. Thus, increasingness
of y(·) requires that θRy (w, y) < 0 and θRw(w, y) > 0 for all w 6= w, w̄. From (15), a
sufficient condition for θRy (w, y) < 0 is that h′′′(l) ≥ 0. This assumption is satisfied by
the commonly-used iso-elastic form. Given that θRy (w, y) < 0, a sufficient condition for
θRw(w, y) > 0 is that the labor supply schedule l(·) is upward sloping.22 Thus, only rela-
tively mild assumptions are needed to ensure that that the maxi-min income schedule is
increasing.

Similarly, increasingness of the maxi-max income schedule yM(·) is equivalent to the
locus of points for which θM(w, y) = 0 being increasing. However, in the maxi-max case,
satisfaction of the second-order condition θMy (w, y(w)) ≤ 0 for yM(w) to solve (12) for
this value of w may be problematic. By (12), yM(w) is found by maximizing

GM(w, y(w)) =

[
y − h

(
y(w)

w

)]
f(w) +

y(w)

w2
h′
(
y(w)

w

)
F (w) (20)

with respect to y(w). Because h is convex, the first term on the right-hand side of (20) is
concave. However, when h′′′(l) > 0, the second term might be convex. If the curvature of
the second term dominates that of the first, then GM is convex in y, and so the second-
order condition is violated. Specifically, the second-order condition θMy (w, y(w)) ≤ 0 is
equivalent to [

2F (w)− wf(w)

w2

]
h′′
(
y(w)

w

)
+ F (w)

y(w)

w4
h′′′
(
y(w)

w

)
≤ 0. (21)

Under a maintained assumption that h′′′(l) > 0, (21) can be satisfied only when the
term in the square bracket on its left-hand side is negative. However, for any unbounded
distribution of wages that has a finite expected value, the numerator in this term tends
to 2 as w tends to infinity. Thus, if w̄ is sufficiently large, it may well be the case that the
second-order condition for an optimum of the relaxed version of the maxi-max problem
will fail to be satisfied for values at the top end of the type distribution.23

22We have −θRw(w, y)/θRy (w, y) = y′(w) = wl′(w) + l(w), from which it follows that θRw(w, y) > 0 if

θRy (w, y) < 0 and l′(w) > 0.
23When providing intuition for the first-order conditions (13) for candidate k’s relaxed problem we

noted that a utility-compensated increase in income and consumption for a type lower than that of
candidate k serves to slacken the upward incentive constraints, thereby allowing this candidate to extract
additional resources from still lower types. Because the mass of these lower types increases with the
candidate’s type, the second-order conditions are more likely to violated for candidates of a relatively
high type.
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For reasons that are closely related to the possible failure of the second-order con-
ditions in the maxi-max case, the function yM(·) can be rather ill-behaved. A rote
application of the implicit function theorem to the top line of (13) yields

dyM(w)

dw
= −θ

M
w (w, yM(w))

θMy (w, yM(w))
. (22)

It is entirely possible that the left-hand side of (21) is negative for values of w near w. In
fact, this must be the case if h′′′(l) = 0. Thus, the denominator in (22) may change signs
at least once on [w, w̄]. This, in turn, implies that yM(·) can have a vertical asymptote
in the interior of the type distribution.

Unlike in the case of candidates distinct from w and w̄, the possible failure of the
second-order conditions in the maxi-min and maxi-max cases are not the result of a down-
ward discontinuity in the income schedule. Nevertheless, in order to obtain a complete
solution to any candidate k’s problem for k ∈ (w, w̄) as described in (10), we need to
take into account not only the second-order conditions for his problem, but also those
for the lowest- and highest-skilled types.

3.3. The Complete Solution

If either the maxi-min or maxi-max income schedule obtained using the first-order ap-
proach fails to satisfy the second-order incentive-compatibility condition (7) (i.e., the
requirement that the schedule must be nondecreasing), then it is necessary to bunch all
types in a decreasing part of the schedule with some types who are in an increasing part,
what is known as ironing. Any bunching region must be a closed interval. Its endpoints
can be determined using the approach described by Guesnerie and Laffont (1984).24 Be-
cause ironing in this kind of situation is well understood and we do not need to know
where the endpoints of these bunching regions are for our results, we shall simply sup-
pose that these schedules have been ironed. We let yR∗(·) and yM∗(·) denote the optimal
maxi-min and maxi-max income schedules when the second-order incentive-compatibility
constraint has been taken into account.

Once the bunching regions for yR∗(·) and yM∗(·) have been determined, it is straight-
forward to modify the objective function (12) in candidate k’s relaxed problem for
k = w, w̄ so as to take account of the second-order incentive-compatibility condition
(7). Doing so will facilitate the analysis of the other candidate types’ problems. Let
BM and BR denote the types that are bunched with some other type in the complete
solution to the maxi-max and maxi-min problems, respectively. When w is bunched, we
let [w−, w+] denote the set of types bunched with w.

In the maxi-max case, only the first integral in (12) applies. Its integrand is replaced

24The first analysis of ironing in economics appears to have been by Arrow (1968). Arrow was con-
cerned with devising an optimal capital policy with irreversible investment. The irreversability of in-
vestment imposes a monotonicity constraint analogous to the one on incomes found here.

15



by GM∗(w, y(w)), where

GM∗(w, y(w)) =


[
(y(w)− h

(
y(w)
w

)]
f(w) + y(w)

w2 h
′
(
y(w)
w

)
F (w), ∀w 6∈ BM ,[

(y(w)− h
(
y(w)
w

)] [∫ w+

w−
f(t)dt

]
+ y(w)

w2 h
′
(
y(w)
w

)
F (w−), ∀w ∈ BM .

(23)
Similarly, in the maxi-min case, only the second integral in (12) applies. Its integrand is
replaced by GR∗(w, y)(w), where

GR∗(w, y(w)) =


[
(y(w)− h

(
y(w)
w

)]
f(w) + y(w)

w2 h
′
(
y(w)
w

)
F (w), ∀w 6∈ BR,[

(y(w)− h
(
y(w)
w

)] [∫ w+

w−
f(t)dt

]
− y(w)

w2 h
′
(
y(w)
w

)
[1− F (w+)], ∀w ∈ BR.

(24)
Ironing does not affect the solution outside a bunching region, so no modifications to

the integrands in (12) are needed for types that are not bunched. The intuition for these
expressions when there is bunching is similar to that provided above for candidate k’s
relaxed problem. Now, if an extra unit of consumption is given to type w individuals, it
must be given to all individuals who are bunched with them, whose mass is

∫ w+

w−
f(t)dt.

For this reason, the f(w) that appears in the first cases of both (23) and (24) is replaced
by this integral in the second cases. When w is bunched, in the maxi-max case, some
of this extra consumption can be reclaimed from individuals of lower type than those
bunched with w, whose mass is F (w−). The corresponding individuals in the maxi-min
case are those individuals of higher type than those bunched with w, whose mass is
[1− F (w+)]. In the second cases of (23) and (24), these expressions are used to replace
the F (w) and [1− F (w)] that appear in the first cases.

Using yR∗(·) and yM∗(·) instead of yR(·) and yM(·) in (18) for k 6= w, w̄, we obtain
the income schedule that must be ironed in order to determine the complete solution to
candidate k’s problem. Because the only decreasing part of this schedule is the downward
discontinuity at his type, only one new bunching region needs to be introduced. In effect,
we must build a bridge that includes k between the maxi-max and maxi-min parts of
this schedule, as illustrated in Figure 3. All types with skill levels in the interval [wb, wB]
are bunched at a common allocation. The values of the bunching interval endpoints wb
and wB are determined optimally so as to minimize the loss in candidate k’s utility that
results from deviating from his relaxed solution.

The endpoints of the bunching interval can be determined using the control-theoretic
approach of Guesnerie and Laffont (1984). However, we instead employ a much simpler
procedure that was introduced by Vincent and Mason (1967, 1968) to smooth discontin-
uous control trajectories. Applied to our problem, in this approach, the optimal schedule
is first selected for each fixed pair of values of the bridge endpoints wb and wB. Then,
among these schedules, the one that maximizes candidate k’s utility is selected. This
is a simple unconstrained optimization problem. In other words, there is no need to

16



y

w

yR∗(·)

yM∗(·)

w wb k wB w̄

Figure 3: A bridge

use optimal control theory to determine the bridge endpoints. Our choice of technique
simplifies the comparative static exercises we perform in Section 4.

The derivatives of GM∗(w, y) and GR∗(w, y) with respect to income are denoted by
θM∗(w, y) and θR∗(w, y), respectively. The before-tax income schedule that solves candi-
date k’s problem in (10) is described in Proposition 3.

Proposition 3. The optimal schedule of before-tax incomes y∗(·) for candidate k’s prob-
lem is given by

y∗(w) =



yM∗(w), ∀w ∈ [w,wb),

yM∗(wb), ∀w ∈ [wb, wB] if wb > w,

yR∗(wB), ∀w ∈ [wb, wB] if wB < w̄,

yR∗(w), ∀w ∈ (wB, w̄].

(25)

The optimal values of the bridge endpoints wb and wB are determined by the first-order
condition ∫ k

wb

θM∗(w, yM∗(wb))dw +

∫ wB

k

θR∗(w, yM∗(wb))dw = 0 (26)

if wb > w and by the first-order condition∫ k

wb

θM∗(w, yR∗(wB))dw +

∫ wB

k

θR∗(w, yR∗(wB))dw = 0 (27)

if wB < w̄.
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(a) A bridge at w
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(b) A bridge at w̄

Figure 4: Bridges at the endpoints of the distribution

The shape of candidate k’s optimal income schedule y∗(·) is given by (25). As we
have already noted, for types smaller than the lower endpoint of the bridge, candidate k’s
optimal income schedule coincides with the maxi-max income schedule yM∗(·), whereas
for types larger than the upper endpoint of the bridge, it coincides with the maxi-min
income schedule yR∗(·). Provided that wB < w̄, the income for skill type wB is yR∗(wB).
Consequently, all individuals on the bridge receive this income. Analogously, if wb > w,
then all individuals on the bridge receive yM∗(wb). If both wb > w and wB < w̄, then
yM∗(wb) = yR∗(wB). It is possible that wb = w, in which case the optimal income schedule
starts with the bridge and then tracks the maxi-min solution. It is also possible that
wB = w̄, in which case the optimal income schedule first tracks the maxi-max solution
and then ends with the bridge.25 These two possibilities are illustrated in Figure 4.

The first-order optimality conditions for the optimal placement of the bridge endpoints
are given in (26) and (27). When both wb > w and wB < w̄ hold, (26) and (27) are
equivalent conditions. These two equations are similar to the standard ironing condition
found in Guesnerie and Laffont (1984, eqn. (3.16), p. 347).

4. The Political Equilibrium

Majority rule is used to determine the income tax schedule that is implemented. As we ob-
served in the previous section, we can equivalently think of voting as taking place over the
types of individuals, with a type k candidate implementing his selfishly optimal incentive-
compatible income tax schedule (or, equivalently, his optimal incentive-compatible allo-
cation schedule) if elected. The advantage of this way of formulating the problem is that
a type is simply a skill level, and so voting takes place over a one-dimensional issue space.

25It is conceivable that wb = w and wB = w̄, in which case the bridge is the whole income schedule.
This possibility is so unlikely that we do not consider it explicitly.
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We show that individual preferences over candidates are single-peaked with respect to
the skill level. It then follows from Black’s Median Voter Theorem (Black, 1948) that
there exists a Condorcet winner, that is, a candidate who beats every other candidate in
a pairwise majority contest. More precisely, a candidate is a Condorcet winner if at least
half of the population weakly prefers this candidate to any other candidate.26 Moreover,
any candidate with the median skill level in the population is a Condorcet winner.27

Thus, the selfishly optimal incentive-compatible tax schedule for an individual with the
median skill level (weakly) beats the selfishly optimal incentive-compatible tax schedule
for any other type of individual in a pairwise majority vote.

It is now necessary to distinguish allocation schedules by the types that propose them.
Let (x∗(w, k), y∗(w, k)) denote the optimal allocation assigned to an individual of type w
by candidate k’s optimal incentive-compatible tax schedule. When k = w̄, y∗(·, k) is the
maxi-max income schedule yM∗(·) and when k = w, it is the maxi-min income schedule
yR∗(·). The utility obtained by an individual with skill level w with the schedule proposed
by a candidate of type k is

V (w, k) = x∗(w, k)− h
(
y∗(w, k)

w

)
. (28)

The bridge in candidate k’s optimal incentive-compatible income schedule is now denoted
by [wb(k), wB(k)].

While it is only necessary to introduce a bridge between the maxi-max and maxi-min
income schedules for types other than w and w̄, it will simplify the statement of our next
result if we define bridges for these two types as well. These bridges are defined to be the
set of types that are bunched with the relevant endpoint of the skill distribution. Thus,
wb(w) = w and wB(w̄) = w̄. In either case, there need not be any bunching, in which
case the endpoints of the bridge are the same. In contrast, for any other type, its bridge
must be a nondegenerate interval.

One determinant of an individual’s preferences for the candidates is the amount of
before-tax income he will obtain with each candidate’s proposal. As a preliminary to
identifying how an individual’s income varies with the type of candidate, we begin by
showing that the endpoints of a bridge are nondecreasing in the candidate’s type.

Proposition 4. The bridge endpoints wb(k) and wB(k) are nondecreasing in k for all
k ∈ [w, w̄].

Consider two candidates k1 and k2 with k1 < k2. Because (i) their proposed income
schedules coincide with the maxi-max schedule for types below the lower endpoint of the
bridge and coincide with the maxi-min schedule for types above the upper endpoint of the
bridge and (ii) the endpoints of a bridge are nondecreasing in the type of the candidate,
any individual’s income is nondecreasing in the type of the candidate.

26Bohn and Stuart (2013) require any individual who is indifferent between two candidates to either
vote for only one of them or to abstain from voting on this pair.

27Our assumption that f(w) > 0 for all w ∈ [w, w̄] implies that there is a unique median skill level.

19



Proposition 5. For all w, k1, k2 ∈ [w, w̄] for which k1 < k2, y∗(w, k1) ≤ y∗(w, k2).28

Some intuition for the comparative static results described in Propositions 4 and 5
may be obtained by considering the income distortions for different types. For individuals
with skill types below the lower endpoint of a bridge, their incomes are determined by the
maxi-max schedule. These incomes are distorted upwards relative to the full-information
solution. The higher the type of the candidate, the more types there are below him, and
so it is beneficial for him to distort the incomes (and labor supplies) of more of these
types upwards. In contrast, for individuals with skill types above the upper endpoint of
a bridge, their incomes are determined by the maxi-min schedule and, so, are distorted
downwards. In this case, the higher the type of the candidate, the fewer the types there
are above him, and so it is beneficial for him to distort the incomes (and labor supplies)
of fewer of these types downwards.

All candidates face the same government budget and incentive constraints. As a
consequence, because each candidate proposes an incentive-compatible income schedule
that is best for him, he must weakly prefer what he obtains with his own schedule to
what anybody else proposes for him. Formally,

V (w,w) ≥ V (w, k), ∀w, k ∈ [w, w̄]. (29)

Thus, each individual’s preferences for the candidates has a peak at his own type. An
individual of skill type w has a (weakly) single-peaked preference on the candidates’ types
if

V (w,w) ≥ V (w, k1) ≥ V (w, k2) if w < k1 < k2 (30)

and
V (w,w) ≥ V (w, k1) ≥ V (w, k2) if w > k1 > k2. (31)

We show in Proposition 6 that everybody’s preferences for the candidates are single-
peaked.

Proposition 6. Individual preferences are single-peaked on the types of the candidates.

Whereas Proposition 5 only considers how an individual’s income varies as the type
of candidate changes, Proposition 6 compares how his utility varies, and so takes account
of both income and consumption changes. Even if two candidates offer an individual
the same income, it does not follow that they offer the same consumption as well. For
example, suppose that w < k1 < k2 and that y∗(w, k1) = y∗(w, k2) because w is on the
maxi-max part of the income schedules proposed by both candidates k1 and k2. Further
suppose that both endpoints of the bridge are larger with the k2 schedule than with the
k1 schedule. The latter assumption implies that aggregate before-tax income increases
when k2’s schedule is used instead of k1’s and, therefore, there is an additional amount of
consumption that can be distributed. Suppose that individual incomes are first adjusted

28The second inequality is in fact strict for all w ∈ (wb(k1), wB(k2)) if wb(k1) < wb(k2) and wB(k1) <
wB(k2).
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to the levels stipulated by candidate k2’s income schedule holding consumptions at the
levels for candidate k1’s consumption schedule. Because preferences are quasilinear in
consumption, if this allocation satisfies the incentive-compatibility constraints, it is then
optimal to distribute the surplus consumption to everybody equally as this will preserve
incentive compatibility. However, it would then be the case that a type w individual
would prefer candidate k2 to candidate k1 because he receives more consumption with k2’s
proposal than with that of k1 without any change in income, contradicting Proposition 6.
Thus, the first stage of this adjustment procedure violates incentive compatibility. In
moving to candidate k2’s schedule, the individuals with skill types in (wb(k1), wb(k2))
have their labor supplies further upward distorted. To restore incentive compatibility, the
consumption of everybody of lower skill, including individuals of type w, must have their
consumptions reduced even after the additional consumption generated by the increase
in the aggregate income has been distributed.29

When preferences over incentive-compatible income tax schedules are single-peaked,
by Black’s Median Voter Theorem (Black, 1948), the tax schedule proposed by the median
skill type does at least as well as any other proposed tax schedule in a majority vote.
Hence, the following proposition is a direct consequence of Proposition 6 and Black’s
Theorem.30

Proposition 7. The selfishly optimal incentive-compatible income tax schedule for the
median skill type is a Condorcet winner when majority voting is restricted to the incentive-
compatible income tax schedules that are selfishly optimal for some skill type.

Thus, the income tax schedule that is enacted by majority voting maximizes the utility
of the median skill type subject to the incentive-compatibility and government budget
constraints. In the typical case in which this schedule has three segments, it features
marginal wage subsidies for individuals with low skill types except for possibly the least
skilled, a bunching region that includes the median type, and positive marginal tax rates
for individuals with high skill types except for the most highly skilled. In particular,
there must be a kink in the tax schedule.

Given the complexity of the policies under consideration, it is striking that a Con-
dorcet winner exists. Indeed, if voting were over all possible nonlinear income tax sched-
ules, there would be voting cycles. As we have noted in the Introduction, a Condorcet
winner exists if only linear income tax schedules that are budget feasible are considered
(see Roberts, 1977). The main insight of Röell (2012) is that by restricting attention

29If w > k2 > k1, y∗(w, k1) = y∗(w, k2) because w is on the maxi-min part of both income schedules,
and the bridge endpoints shift as above, then fewer types have their labor supplies downward distorted
in moving from candidate k1’s schedule to that of candidate k2. For this reason, some of the newly
generated consumption is allocated to type w individuals to help restore incentive compatibility.

30Black (1948) assumes that each voter has a unique most-preferred alternative. The reasoning used
to establish his Median Voter Theorem extends to the weakly single-peaked preferences considered here.
We conjecture that each skill type has a unique optimal incentive-compatible income tax schedule, but
that in some circumstances an interval of candidate types may prefer the same schedule.
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to the incentive-compatible tax schedules that are optimal from some individual’s per-
spective, there is a Condorcet winner even when nonlinear income tax schedules are
permitted provided that preferences are quasilinear in consumption and there is a finite
number of skill types. Proposition 7 confirms that this insight extends to an economy
with a continuum of skill types.

5. Conclusion

We have fully characterized the incentive-compatible income schedule that is selfishly
optimal for any skill type. The desire of an individual to redistribute resources towards
himself both from those who are less skilled and from those who are more skilled has
been shown to result in a downward discontinuity in the selfishly optimal income schedule
identified using the first-order approach, which is a novel kind of violation of a second-
order incentive-compatibility constraint in the optimal income tax literature. Moreover,
the upward redistribution from the less skilled results in a non-standard pattern of distor-
tions reminiscent of those found in the screening literature with participation constraints
and countervailing incentives, as studied in detail by Jullien (2000). In addition, for suf-
ficiently large skill types, we have observed that there are complications due to potential
violations of the second-order incentive-compatibility conditions that do not feature in
the existing literature on countervailing incentives. Nevertheless, in spite of all of these
complications, we have shown that the selfishly optimal income (and allocation) schedules
can be quite simply described.

Our comparative static result describing how the selfishly optimal income schedules
vary with the type of candidate is easy to state in terms of bridge endpoints. This simple
structure is what gives rise to single-peaked preferences over candidates (and their tax
schedules), from which our median voter result follows. Our comparative static result
can also be used to analyze the equilibria of other voting rules, such as various forms
of plurality rule, or as a building block in understanding the positions that different
constituencies might hold and advocate in more institutionally rich models of political
decision-making.

The tools we use to identify the endpoints of a bridge are of potential interest in the
study of other screening problems in which the first-order approach results in disconti-
nuities in the solution that violate the second-order incentive-compatibility conditions.
For example, a policy design problem in which some group is explicitly excluded from
the planner’s objective but is part of the set of contributors to the policy’s finances may
well give rise to such a discontinuity.

In Brett and Weymark (2014), we show that our analysis can be modified to take
account of the minimum-utility constraint employed by Röell (2012) and Bohn and Stu-
art (2013) without fundamentally changing the basic structure of a candidate’s selfishly
optimal income schedule. Interestingly, the addition of such a constraint increases the
plausibility of our sufficient conditions for the satisfaction of the second-order conditions
in a candidate’s optimization problem. The minimum-utility constraint induces a can-
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didate to behave as if he is maximizing a weighted average of his own utility and the
utility of the least skilled. For types above his own, this modified objective has no ef-
fect on this candidate’s optimal income schedule because he still wants to redistribute
resources downward from these types. For types below this candidate, however, the
weighted averaging pulls the income schedule toward the more well-behaved maxi-min
schedule. Moreover, the shadow value of the minimum-utility constraint increases with
the candidate’s type, so that relatively high-skilled candidates (who in our basic model
are more prone to violations of the second-order conditions) optimally choose income
schedules that are the most shifted away from what they would choose in the absence of
the minimum-utility constraint.

The tendency for democratic governments to redistribute from both the poor and the
rich toward the middle class is known as Director’s Law (see Stigler, 1970). While the
income tax schedule implemented by a median voter in our model differs in a number of
respects from the schedules that are observed in practice, it is, however, consistent with
Director’s Law. Exploring whether this feature of income tax policy is preserved when
the model is enriched to allow for labor market decisions at the extensive margin or for
other policy instruments, such as workfare, is a natural topic for future research.
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Appendix

Proof of Proposition 1. By (6),

V (w) = V (w) +

∫ w

w

y(t)

t2
h′
(
y(t)

t

)
dt. (A.1)

Integrating (A.1) over the support of the distribution of types yields∫ w̄

w

V (w)f(w)dw =

∫ w̄

w

V (w)f(w)dw +

∫ w̄

w

∫ w

w

y(t)

t2
h′
(
y(t)

t

)
f(w)dtdw. (A.2)
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Reversing the order of integration in (A.2), we obtain∫ w̄

w

V (w)f(w)dw = V (w) +

∫ w̄

w

y(t)

t2
h′
(
y(t)

t

)[∫ w̄

t

f(w)dw

]
dt

= V (w) +

∫ w̄

w

y(t)

t2
h′
(
y(t)

t

)
[1− F (t)] dt.

(A.3)

On the other hand, by (4),∫ w̄

w

V (w)f(w)dw =

∫ w̄

w

x(w)f(w)dw −
∫ w̄

w

h

(
y(w)

w

)
f(w)dw. (A.4)

As previously noted, it is optimal for the government budget constraint (9) to bind.
Substituting the equality form of (9) into (A.4) yields∫ w̄

w

V (w)f(w)dw =

∫ w̄

w

y(w)f(w)dw −
∫ w̄

w

h

(
y(w)

w

)
f(w)dw. (A.5)

Combining (A.3) and (A.5) implies that

V (w) =

∫ w̄

w

y(w)f(w)dw −
∫ w̄

w

h

(
y(w)

w

)
f(w)dw

−
∫ w̄

w

y(w)

w2
h′
(
y(w)

w

)
[1− F (w)] dw.

(A.6)

The maximand in (12) is obtained by substituting (A.6) into (A.1) and setting w = k.
The preceding calculations have accounted for all the constraints in (11), and so the proof
is complete.

Proof of Proposition 3. First, fix the bridge endpoints wb and wB and let y∗(wb, wB)
denote the optimal income on the bridge [wb, wB]. A bridge cannot begin in the interior
of a bunching interval of yM∗(·), nor can it end in the interior of a bunching interval of
yR∗(·), so it is supposed in the rest of this proof that wb and wB satisfy these restrictions.
The rest of candidate k’s optimal income schedule is obtained by solving

max
y(·)

[∫ wb

w

GM∗(w, y(w))dw +

∫ w̄

wB

GR∗(w, y(w))dw

]
subject to y(w) = y∗(wb, wB), ∀w ∈ [wb, wB].

(A.7)

This problem can be solved point-wise. Its solution is given implicitly by the first-order
conditions

θM∗(w, y(w)) = 0, ∀w ∈ [w,wb),

θR∗(w, y(w)) = 0, ∀w ∈ [wB, w̄].
(A.8)
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Thus,
y∗(w) = yM∗(w), ∀w ∈ [w,wb), (A.9)

and
y∗(w) = yR∗(w), ∀w ∈ wB, w̄). (A.10)

We now need to determine the optimal endpoints of the bridge and the optimal income
on the bridge. There are two cases to consider.

Case 1: wB < w̄. Continuity of the solution implies that y∗(wB) = yR∗(wB). We also
have y∗(wB) = y∗(wb) because income is a constant on the bridge. If wb > w, then by
continuity, y∗(wb) = yM∗(wb). Let

φ(wB) =

{
yM∗

−1
(yR∗(wB)), if wb > w,

wb, if wb = w.
(A.11)

Because yM∗(·) is continuous and piecewise continuously differentiable, so is φ(·). Can-
didate k’s choice of wB is therefore the solution to

max
wB

B(wB, k) ≡
∫ φ(wB)

w

GM∗(w, yM∗(w))dw +

∫ k

φ(wB)

GM∗(w, yR∗(wB))dw

+

∫ wB

k

GR∗(w, yR∗(wB))dw +

∫ w̄

wB

GR∗(w, yR∗(w))dw,

(A.12)

where use has been made of (A.9) and (A.10) in (A.12). Setting the derivative of B(w, k)
with respect to wB equal to zero, we obtain the first-order condition

GM∗(wb, y
M∗(wb))

dφ(wB)

dwB
−GM∗(wb, y

M∗(wb))
dφ(wB)

dwB

+

∫ k

wb

θM∗(w, yR∗(wB))
dyR∗(wB)

dwB
dw +

∫ wB

k

θR∗(w, yR∗(wB))
dyR∗(wB)

dwB
dw

+GR∗(yR∗(wb, y(wB))−GR∗(yR∗(wb, y(wB)) = 0.

(A.13)

Simplifying (A.13) yields

dyR∗(wB)

dwB

[∫ k

wb

θM∗(w, yR∗(wB))dw +

∫ wB

k

θR∗(w, yR∗(wB))dw

]
= 0. (A.14)

Because a bridge cannot end in the middle of a bunching region of yR∗, it must be the
case that the derivative in this expression is positive. Hence, (27) holds.

Case 2: wb > w. Continuity of the solution now implies that y∗(wb) = yM∗(wb). Let

ψ(wb) =

{
yR∗

−1
(yM∗(wb)), if wB < w̄,

wB, if wB = w̄.
(A.15)
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Candidate k’s choice of wb is the solution to

max
wb

b(k, wb) ≡
∫ wb

w

GM∗(w, yM∗(w))dw +

∫ k

wb

GM∗(w, yM∗(wb))dw

+

∫ ψ(wb)

k

GR∗(w, yM∗(wb))dw +

∫ w̄

ψ(wb)

GR∗(w, yR∗(w))dw,

(A.16)

The analogue of (A.14) is

dyM∗(wb)

dwb

[∫ k

wb

θM∗(w, yM∗(wb))dw +

∫ wB

k

θR∗(w, yM∗(wb))dw

]
= 0, (A.17)

from which (27) follows because a bridge cannot begin in the middle of a bunching region
of yM∗.

Proof of Proposition 4. We first show that wB(k) is nondecreasing in k. Consider any
value of k for which wB(k) < w̄. Differentiating the left-hand side of (A.14) with respect
to k, we obtain

∂2B(wB, k)

∂wB∂k
=
dyR∗(wB)

dwB

[
θM∗(k, yR∗(wB))− θR∗(k, yR∗(wB))

]
=
dyR∗(wB)

dwB

[
h′′
(
yR∗(wB)

k

)
yR∗(wB)

k3
+ h′

(
yR(wB)

k

)
1

k2

]
,

(A.18)

where the second equality follows from (14) and (15). Because h(·) is a strictly convex
function, the cross-partial derivative in (A.18) is positive. Hence, by Theorems 10.3
and 10.4 in Sundaram (1996), the function B is supermodular and therefore exhibits
increasing differences in (w, k). Thus, by Topkis’ Theorem (Topkis, 1978, Theorem 6.1),
it follows that wB(k) is nondecreasing in k for values of k for which wB(k) < w̄.

If wB(k) = w̄, the proof proceeds as above except that y∗(w̄) is used instead of
yR∗(wB) in (A.11).

The proof that wb(k) is nondecreasing in k is almost the same as that for the other
endpoint of the bridge. In this case, the left-hand side of (A.17) is differentiated with
respect to k to obtain

∂2b(wb, k)

∂wb∂k
=
dyM∗(wb)

dwb

[
θM∗(k, yM∗(wb))− θR∗(k, yM∗(wb))

]
=
dyM∗(wb)

dwb

[
h′′
(
yM∗(wb)

k

)
yM∗(wb)

k3
+ h′

(
yM∗(wb)

k

)
1

k2

]
,

(A.19)

and y∗(w) is used instead of yM∗(wb) in (A.15).

Proof of Proposition 6. We only show (30) as the proof of (31) analogous. Consider
three types w, k1, and k2 for which w < k1 < k2. The first inequality in (30) follows
immediately from (29).
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To show that the second inequality holds as well, first note that by (6),

V (w, k1) = V (k1, k1)−
∫ k1

w

h′
(
y∗(t, k1)

t

)
y∗(t, k1)

t2
dt. (A.20)

Therefore, using (29),

V (w, k1) ≥ V (k1, k2)−
∫ k1

w

h′
(
y∗(t, k1)

t

)
y∗(t, k1)

t2
dt. (A.21)

It also follows from (6) that

V (w, k2) = V (k1, k2)−
∫ k1

w

h′
(
y∗(t, k2)

t

)
y∗(t, k2)

t2
dt. (A.22)

Subtracting (A.22) from (A.21) yields

V (w, k1)− V (w, k2) =

∫ k1

w

[
h′
(
y∗(t, k2)

t

)
y∗(t, k2)

t2
− h′

(
y∗(t, k1)

t

)
y∗(t, k1)

t2

]
dt.

(A.23)
By Proposition 5, y∗(t, k2) ≥ y∗(t, k1) for all t. Therefore, by the convexity of h(·), the
expression in (A.23) is nonnegative, as was to be shown.
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